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/ ABSTRACT

This paper reviews the state of the art in enumerative solution methods
for tn. traveling salesman problem (TSP). The introduction (Sectiom 1)
discusses the main ingredients of branch and bound methods for the TSP.
Sections 2, 3 and 4 discuss classes of methods based on three different re-
laxations of the TSP: the assigrment problem with the TSP cost function, the
l-tree problem with a Lagrangean objective function, and the assignment
problem with a Lagrangean objective function. Section 5 briefly reviews some
other relaxations of the TSP, while Section 6 discusses the performance of
some state of the art computer codes, Besides material from the literature,
the paper also includes the results and statistical analysis of some computa-

tional experiments designed for the purposes of this review.
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1, Introduction

Since the first attempt to solve traveling salesman problems by an enume:s-
ative approach, apparently due to Eastman [1958], many such procedures have been

proposed. In a sense the TSP has served as a testing ground for the deveézpment

/
of solution methods for discrete optimization, in that many procedures ans\devices \Jﬁ\~>
N
%
were first developed for the TSP and then, after successful testing, extended to =

more general integer programs. The term "branch and bound" itself was coined by

Little, Murty, Sweeney and Karel [1963] in conjunction with their TSP algorithm,

Enumerative (branch and bound, implicit enumeration) methods solve a dis-
crete optimization problem by breaking up its feasible set into successively
smaller subsets, calculating bounds on the objective function value over each
subset, and using them to discard certain subsets from further consideration.
The bounds are obtained by replacing the problem over a given subset with an easier
(relaxed) problem, such that the solution value of the latter bounds that of the
former. The procedure ends when each subset has either produced a feasible
solution, or was shown to contain no better solution than the one already in
hand. The best solution found during the procedure is a global optimum.

For any problem P, we denote by v(P) the value of (an optimal solution

to) P. The essential ingredients of any branch and bound procedure for a dis-

crete optimization problem P of the form min{f(x)|x € S} are
(1) a relaxation of P, i.e, a problem R of the form min{g(x)|x = T},
such that S&T and for every x,y€S, f(x) < f(y) implies g(x) < g(y).
‘(ii) a branching or separation rule, i.e., a rule for breaking up the

feasible set Si of the current subproblem Pi into subsets

q
S veey S such that . §,, = S ;
i1’ ' Yiq’ !
q jul i3 i
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(111) a lower bounding praocedure, i.e. a procedure for finding (or

approximating from below) V<Ri) for the relaxation Ry of each

subproblem Pi; and

ol 7 Al

(iv) a subproblem selection rule, i.e, a rule for choosing the next ' 3
subproblem to be processed, -§

Additional ingredients, not always present but always useful when present,

are

i (v) an upper bounding procedure, i.e. a heuristic for finding feasible

solutions to P; and
(vi) a testing procedure, i.e., a procedure for using the logical implications

1 of the constraints and bounds to fix the values of some variables

(reduction, variable fixing) or to discard an entire subproblem !
: (dominance tests), ?
For more information on enumerative methods in integer programming see,
for instance, Chapter 4 of Garfinkel and Nemhauser [1972], and/or the surveys
by Balas [1975], Balas and Guignard [1979], Beale [1979], Speilberg [1979].
Since by far the most important ingredient is (i), we will classify the

branch and bound procedures for the TSP according to the relaxation that they

use,

The integer programming formulation of the TSP that we will refer to when
discussing the various solution methods is defined on a complete directed graph

G = (V,d) on n nodes, with node set V = {1,...,n}, arc set A = {(1,))!1,] = 1,...;;},

and nonnegative costs ¢ associated with the arcs, The fact that G is

13
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complete involves no restriction, since arcs that one wishes to ignore can be

agsigned the cost c,, = =, In all cases <¢

i}
formulated, following Dantzig, Fulkerson and Johnson [1954], as the problem

g ¥ 1€V. The TSP can be

L min S Ze¢, ,x
teviey 134

s,t,

e M
(2) o
S x 1, j€
jev
(3) = Z:cijsisl-l, ¥Sgv, sk
1€53€S
{&4) Xy " 0orl, {,jev,
where xij = 1 {f arc (1,j) is in the solution, xij = 0 otherwise.
The subtour elimination inequalities (3) can also be written as
(5 z T

5 x,,>1, ¥ScV, SH
1esjens 7

A very important special case is the symmetric TSP, in which cij = Cji’
¥i,j . The symmetric TSP can be defined on a complete undirected graph G =(V,E)

on n nodes, with node set V, edge set E, and arbitrary costs cij’ It can

be stated as

(6) min I Ce,.,x
tevypy HOH
Sth
7 SX,,+ Zx,, =2, iéy
j<i it §>1 i

"




g (8) S Sax,<|sl1 ¥SgV, Sk
sesjes H ' B |
o1 i
{
(%) X " 0orl, i,jev , 3>14 :

where the subtour elimination inequalities (8) can also be written as

(10) T 2 x,.,+ I cTx,>2, ¥sgV,sH
iesjens M ien\sjes M 7
> >

Next we outline two versions of a branch and bound procedure for the TSP.
Prior to using any of these versions, a relaxation R of the TSP must be
chosen., Both versions carry at all times a list of active subproblems, They

differ in that version 1 solves a (relaxed) subproblem Rk only when node k is

selected and taken off the list, while version 2 solves each (relaxed) sub-

problem as soon as it is created, i.e. before it is placed on the list,

Although the branch and bound procedures used in practice differ among them-

i T e

selves in many details, nevertheless all of them can be viewed as variants of
one of these two versions,

Branch and bound method for the TSP

Version 1
1. (Initialization), Put TSP on the list (of active subproblems), Initia-
lize the upper bound at U = w, and go to 2,

2. (Subproblem selection), If the list is empty, stop: the tour associated

with U is optimal (or, if U =, TSP has no solution), Otherwise choose

a subproblem TSPi according to the subproblem selection rule, remove TSP1

B e s i g

from the list, and go to 3. 1.




(Lower bounding). Solve the relaxation R1 of TSPi or bound V(Ri) from
below, and let Li be the value obtained,

1f L; 2 U, return to 2,

1f Li < U and the solution defines a tour fgr TSP, store it in place
of the previous best tour, set U =~ Li’ and go to 5.

If Li < U and the solution does not define a tour, go to 4,

(Upper bounding: optional). Use a heuristic to find a tour in TSP, If
a better tour is found than the current best, store it in place of the
latter and update U, Go to 5.

5. (Reduction: optional), Remove from the graph of TSPi all the arcs whose
inclusion in a tour would raise its value above U, and go to 6,

6. (3ranching). Apply the brancaing rule to TSPI, i.e, generate new

subproblems TSPil,..., TSEic, place them on the list, and go to 2,

Version 2

1. (Initialization), Like in version 1, but solve R before putting TSP
on the list,

2. (Subproblem selection), Same as in version 1,

3. (Upper bounding: optional). Same as Stap &4 of version 1, with "go to 5"
replaced by "go to 4."

4, (Reduction: optional), Same as step 5 of version 1, with "go to 6" replaced
by '"to go 5."

5. (Branching). Use the branching rule to define the set of subproblems
TSP“_,...,TSPiq to be generated from the current subproblem TSPI,

and go to 6,




ki)

6. (Lower bounding), 1If all the subproblems to be generated from 'I.‘SPi
according to the branching rule have already been generated, go to 2.
Otherwise generate the next subproblem ‘rSPij defined by the branching
rule, solve the relaxation Rij of TSPiJ or bound V(Rij) from below,
and let L be the value obtained,

i}
If Lij > U, return to 6,

if Lij < U and the solution defines a tour for TSP, stora it in place

of the previous best tour, set U~ 1,6 , and go to 6.

1]

1f Lij < U and the solution does not define a tour, place TSP,, on the list

ij
and return to 6.
In both versions, the procedure can be represented by a rooted tree (search
or branch and bound tree) whoSe nodes correspond to the subproblems generated,

with the root node corresponding to the original problem, and the successor nodes

of a given node i associated with TSPi corresponding to the subproblems
TSPil,...,TSPiq defined by the branching rule.

It is easy to see that under very mild assumptions on the branching rule
and the relaxation used, both versions of the above procedure are finite (see

Exercise 1).

Next we discuss various specializations of the procedure outlined above,
classified according to the relaxation that they use, When assessing and
comparing the various relaxations, one should keep in mind that a "good" re-
laxation is one that (i) gives a strong lower bound, i.e, yields a small
diffarence v(ISP) - v(R) ; and (ii) is easy to solve, Naturally, these are

ofcen conflicting goals, and in such cases one has to weigh the tradeoffs,
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2. Relaxation I: The Assignment Problem with the TSP Cost Fuactien

The most straightforward relaxation of the TSP, and historically the first
one to have been used, is the problem obtained from the integer programming

formulation (1), (2), (3), (4) by removing the constraints (3), i.,e. the

assignment problem (AP) with the same cost function as TSP. It was used,

among others, by Eastman [1958], Little, Murty, Sweeney and Karel [1963],
Shapiro {1966], Bellmore and Malone [1971], Smith, Srinivasan and Thompson
[1977], Carpaneto and Toth [1980].

An agsignment (i.e,, a solution to AP) is a union of directed cycles,
hence either a tour, or a collection of subtours, There are nl distinct
assiznments, of which (m-1)! are tours, Thus on the average one in every n
assignments is a tour, Furthermore, in the current context only those assign-
ments are of interest that contain no diagonal elements (i,e., satisfy x, =

ii
0, i=l,ees,n), and their number is nl!/e rounded to the nearest integer,

i.,e. |nl/e + 1/2] (see, for example, Hall [1967], p. 10). Thus on the average one

in every n/e '"diagonal-free" assignments is a tour., This relatively high fre-
quency of tours among assignments suggests that v(AP) is likely to be a pretty
strong bound on v(TSP), and computational experience with AP-based solution
methods supports such a view., To test how good this bound actually is for
randomly generated problems, we performed the following experiment. We gen-
erated 400 problems with 50 < n < 250 with the costs independently drawm from a
uniform distribution of the integers over the intervals [1,100] and [1,1000],
and solved both AP and TSP, We found that on the average v(AP) was 99,27 of
v(ISP), Furthermore, we found the bound to improve with problem size, in that
for the problems with 50 < n < 150 and 150 < n < 250 the outcomes were 98.8%

and 99,67, respectively.
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restricted to 2 cutset defined by some subtour of the AP solution. Computa-
tional experience indicates, however, that the impact of such a penalty tends

to derrease with problem size and is negligible for anything but small problems,
In the computational experiment involving the 400 randomly generated problems
that we ran, the addition of a penalty to v(AP) raised the value of the lower

bound on the average by 0,03%, from 99.27% to 99.23% of v(TSP).

Brarching rules

Several branching rules have been used in conjunction with the AP relaxa-
ation of the TSP. In assessing the advantages and disadvantages of these rules
one should keep in mind chat thes ultimate goal is to solve the TSP by solving

as few subproblems as possible. Thus a '"good" branching rule is one that

(&) generates few successors of a node of the search tree, and (b) generates
strongly constrained subproblems, i.e. excludas many solutions from each
subproblem, Again, these criteria are usuzally conflicting and the merits of
the various rules depend on the tradeoffs,

We will discuss the various branching rules in terms of sets of arcs
excluded (Ek) from, and included (Ik) into the solution of subproblem
ke In terms of the variables xij’ the interpretation of these sets is that

subproblem k 1is defined by the conditions

{
0, (1,)) €
(11) X,, = *
o, e er

in addition to (1), (2), (3), (4). Thus the relaxation of subproblem k is
given by (11) in addition to (1), (2), (4). We abbreviate Branching Rule

by 3R.
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BR 1, (Little, Murty, Sweeney and Karel (1963]), Given the current re-

laxed subproblem Apk and its reduced costs cij - cij su - Vj’ where u,
and vj are optimal dual variables, for every arc (1,3) such that Elj =0

define the penalty
pyy = min scih : BN\ 1}} + min : héV\{i}}
and choose (r,s) € A such that
Ppy = max {pij : E;j = O} °
Then generate two successors of node k, nodes k +1 and k + 2, by
defining

B "R UEmO}, g e

and
Btz = By Tz = 4 U(zo)} o
This rule does not use the special structure of the TSP (indeed, it applies
to any integer pProgram), and has the disadvantage that it leaves the

optimal solution to AP fensible for APk +2°

The following rules are based on disjunctions derived from the subtour

elimination inequalities (3) or (5).

BR 2, (Eastman [1958], Shapiro [1966]), Let x be the optimal solution to
the current relaxed subproblem AP , and let A = [(11,1 ),...,(i:,i )} be the
arc set of a minimum cardinality subtour of xk involving the node set
S = {11,...,1t}. Constraint (3) for § implies the inequality

(39 < x . <|s| -1,
(1,1 J

which in turn implies the disjunction

(12) X =0 V...Vx -O.
1112 1t11
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Generate t successors of node k, defined by

= L) b
Ek+@ Ek “{(ir’ir+1)‘
(13) r-l,t\tQ.t
Lewr = I
with it+1 = il .

Now xk is clearly infeasible for all APR*T, T =1,,,4,t, and the choice
of a shortest subtour for branching keeps the number of successor nodes small,
However, the disjunction (12) does not define a partition of the feasible set
of APk, and thus different successors of APk may have solutions in common, This

shorteoming is remedied by the next rule, which differs from BR 2 only in that

it strengthens the disjunction (12) to one that defines a wartizion,

BR 3, (Murty [1968], Bellmore-Malone {1971], Smith, Srinivasan and

Thompson [1977]). The disjunction (12) can be strengthened to

(14) (x, ., =0) v(x =1, x, . =0) V.. V(x L T =1,x, . =0),
hip 44, 1ri; hip Leatfe 77 LA

and accordingly (13) can be replaced by

Ek+r = Ek U{(ir:ir+1)}
(15) > r'l,ooogt

Ik+r - Ik u{(ilaig):ooos(ir-ltir)}

/

with _it+ = i

1 1°

1

A slightly different version of BR 3 (as well as of BR 2) is to replace

the edge set A, of a minimum-cardinalicy subtour with that of a subtour with a
= ]

A
PR T b i s
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ninimum number of free edges (i.e, edges of E\EQJIk). This rule is used ip

S B A RN i B8

Carpaneto and Toth [1980],

BR 4, (Bellmore and Malone [1971]), Let xk and S be as before.

Constraint (5) implies the disjunction

(16) (xilj =0, J€S) V(xiz.1 =0, J€8) V...V(xitj = 0, j€s). c
Generate t successors of node k, defined by
Bper = B VL0 & 3€8)] 3
(17) r=1,,4.,t

Ik+r = Ik

Like in the case of BR 2, Br 4 makes xk infeasible for all successor
problems of APR, but again (16) does not partition the feasible set of APk.
This is remedied by the next rule, which differs fzom BR 4 ounly in that it

defines a parcitiom,

BR 3, (Garfinkel [1973]). The disjunction (16) can be strengthened to

(18) (xi ;" 0, j€9) V(%

=0, JEV\S; x
1 13 L

=0, j&€5) V...
9d

V(:-:irj =0, JON\S,r = 1,..4,t-1; x, , = 0, J€S)

i.J
and accordingly (17) can be replaced by

B =B VAL jES}U{(iq,J): q=1l,...,r-1, JENS}
(19)

=
T+r K
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The two rules BR 2 and BR 4 (or their strengthened variants, BR 3 and
BR 5), based on the subtour-elimination constraints (3') and (5), respectively,
generate the same number of successors of a given node k. However, the rule
based on inequality (5) generates more tightly constrained subproblems, i.e.,
excludes a greater number of assignments from the feasible set of each successor
problem, than the rule based on inequality (3'). Indeed, with ‘S‘ = k, we have

Theorem 1. (Bellmore and Malone [1971]). Each inequality (3') eliminates
[(n-k)!/e + 1/2] diagonal-free assignments, whereas each inequality (5) eliminates
L(n=k)!/e + 1/2] + |k!/e + 1/2| diagonal-free assignments.

Proof. Each inequality (3') eliminates those diagonal-free assignments
that contain the subtour with arc set AS. There are as many such assignments
as there are diagonal-free assignments in the complete graph defined on node
set V\S, and the number of these is (n-k)!/e rounded to the nearest 1nte§er, i.e.,
|(n~k)!/e + 1/2| (see section 2).

On the other hand, each inequality (5) eliminates those diagonal-free
assignments consisting of the union of two such assignments, one in the complete
graph defined on S, the other in the complete graph defined on V\S. Since the
number of the latter is [(n-k)!/e + 1/2] and that of the former is |kle + 1/2},
the number of diagonal=free assignments eliminated by each inequality (5) is as
stated in the theorem.”

Nevertheless, both Smith, Srinivasan and Thompson [1977] and Carpaneto and
Toth [1980] found their respective implementations of BR 3 more efficient than

BR 4 or BR 5, both in terms of total computing time and number of nodes generated.

We have no good explanation for this,

Yl

G i
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Qther features 2

The subproblem selection rule used by many branch and bound algorithms is the

one known as 'depth first'" or LIFO (last in first out), It amounts to choosing
one of the nodes generated at the last branching step (in order, for instance,

of nondecreasing penalties, like in Smith, Srinivasan and Thompson

A AR ottt S

[1977]); and when no more such nodes exist, backtracking to the parent node .

and applying the same rule to its brother nodes, This rule has the advantage

of modest storage requiresments and easy bookkeeping, Its disadvantage is that

possible erroneous decisions (with respect to arc exclusion or inclusion) made ;

early in the procedure cannot be corrected until late in the procedure,

The alternative extreme is known as the '"breadth first" rule, which
amounts to always choosing the node with the best lower bound. This rule has
the desirable feature of keeping the size of the search tree as small as possible,
(see Exercise 3), but on the other hand requires considerable storage space. In
order to keep simple the passage from one subproblem to the next one, this rule
must be embedded in a procedure patterned after version 2 of the outline in the

iatroduction, which solves each assignment problem as soon as the corresponding noce

is generated, and places on the list only those subproblems TSPi with L, <U.

] k|
The procedure of Carpaneto and Toth [1980] uses this rule, and it chooses the
subproblems to be processed (successors of a given node) in the order defined
by the arc adjacencies in the subtour that serves as a basis for the branching,

As mentioned earlier, the high fraquency of tours among assignments makes

AP a relatively strong relaxation of TSP, which in the case of random (asymmetric)
costs provides an excellent lower bound on v(ISP), However, in the case of
the symmetric TSP, the bound given by the optimal AP solution is substantially j

weaker, An experiment that we ran on 140 problems with 40 < n < 100 and with

symnecric costs independently drawm from a uniform distribution of the incegers

b= oty o an . 'y
it R e B 10 5t AR
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in the interval {1, 1000], showed V(AP) to be on the average 827 of v(TSP),
while the addition of a penalty raised the bound to 85%. The explanation of the

relative weakness of this bound is pretty straightforward: in the symmecric case,

there is a tendency towards a certain symmetry also in the solution, to the effect
that if xij = 1, then (since cij - cji)’ one tends to have xji = 1 too;

and thus the optimal AP solution usually contains a lot of subtours of length 2,
irrespective of the size of n , Thus as a rule, a much larger number of

subtours has to be eliminated before finding an optimal tour in the symmetric
case than in the asymmetric one., This makes the AP a poor relaxation for

the symmetric TSP.

3, Relaxation II: The l-Tree Problem with rangean Objective Function

This relaxation was successfully used for the symmetric TSP first by Held
and Karp {1970, 197i] and Christofides [1970], and subsequently by Helbig Hansen
and Krarup [1974], Smith and Thompson [1977], Volgenant and Jonker [1982].

Consider the symmetric TSP and the undirected (complete) graph G = (V,E)

associated with it, The problem of finding a connected spanning subgraph H

of G with n edges, that minimizes tha cost function (6), is obviously a

relaxation of the symmetric TSP, Such a subgraph H consists of a spanning

tree of G, plus an extra edge. We may further restrict H to the class J
of subgraphs of the above :ype in which some arbitrary node of G, say node 1,
has degree 2 and is contained in the unique cycle of H, For lack of a

better tarm, the subgraphs of this class J are called l-trees, To see thac
finding a l-tree that minimizes (6) is a relaxation of che TSP, it suffices to

realize that the constraint set defining the fauily 7 4is (9) and
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(20) T S x,,+F Sx,.>1, ¥ScvV, sk
tesyens M gepsjes 1 7
>t >1
(21) T Zx,=n
1evi>y 1
(22) Sx , =2
jev 1]

Here (20) is a weakening of (10), (21) is the sum of all equations (7)
divided by two, and (22) is the first equation (7). '

The minimum-cost l-tree problem is easily seen to be cdecomposable into
two independent problems:

(g) to find a minimum-cost spanning tree in G - {1}; and

(8) to find two smallest-cost edges among those incident in G with node 1,

The n~2 edges of the spanning tree found under (¢), together with the
2 edges found under (8), form a minimm-cost l-tree in G,

Solving problem (8) requires O(n) comparisons, whereas problem (&)
can be efficiently solved by the algorithms of Dijkstra [1959] or Prim [1957],
of complexity O(nz), or by the algorithm of Kruskal [1956], of complexity
0(lE| log |E}). Since the log |E] in the last expression comes from sorting
the edges, a sequence of subproblems that requires only minor resorting of the

edges between two members of the sequence can be more efficiently solved by

Kruskal's procedure than by the other two,.

The number of l-trees in the complete undirected graph G on n nodes can be
calculated as follows: the number of distinct spanning trees in G - {1} is

a-3 n-l.
(n=1) (Cailey's formula), and from each spanning tree one can get ( 2 ; distinct

l-trees by inserting two edges joining node 1 to the tree. Thus the number of

"
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l-trees in G is %(n-Z)(n-l)n-Z, which is much higher than the number of solu-

tions to AP. Since G has (n-1)! tours, on the average the number of tours among

the l-trees of a complete undirected graph is one in every %(n-Z)(n-l)n-3/(n-2)!,
and hence the minimum-cost l-tree problem with the same objective function as

the TSP is a rather weak relaxation of the TSP, In the above mentioned computa-
tional experiment on 140 randomly generated symmetric problems, we also solved

the corresponding l-tree problems and found the value of an optimal l-tree to be

on the average only 637 of v(TISP). However, this relaxation can be considerably
strengthened by taking the equations (7) into the objective function in a Lagrangean
fashion, and then maximizing the Lagrangean as a function of the multipliers.

The problem

23) L(A) = min £ Zc X < k Ex °x,,-2)
X (N ievi>L 13 13" g 't > H
= min £ 2 (c,, + K + A )x -2 TA,,
X (@ievi>t i T

where A is any n-vector and X(J) is the set of incidence vectors of l-trees in
G, i.e., the set defined by (9), (20), (21), (22), is a Lagrangean relaxation

of the TSP, From the last expression in (23) and the fact that X(v) contains
all tours, it is easy to see that for any \, L(A) < v(TSP). (For surveys of
Lagrangean relaxation in a more general context see Geoffrion [1974], Fisher
[1981], Shapira (1979].) The strongest Lagrangean relaxation is obviously given
by A = % such that

24) L) = % L) .

¢

rrcblem (24) is sometimes called a Lagrangean dual of the TSP,

P R T

%
3




Now (24) is a much stronger relaxation than the l-tree problem
with the TSP cost function, Indeed, computational experience with randomly
generated problems has produced on the average values of L(\) of about 99%
of Vv(ISP) according to Christofides [1979] (p. 134), and of about 99.7%
of v(TSP) according to Volgenant and Jonker [1982].

However, solving (24) is a lot more difficult than solving a l-tree
problem, The objective function of (24), i.e. the function L) of (23), is
piecewise linear and concave in A, Thus L(A) is not everywhere differentiable,
Held and Karp [1971], who first used (24) as a relaxation of the TSP, have tried
several methods, and found that an iterative procedure akin to the relaxation method

of Agmon [1954] and Motzkin and Schoenberg [1954] was the best suited approach

for this type of problem, The method, which turned out to have been theoret-
ically studied in the Soviet literature (see Polyak [1967] and others)

became the object of extensive investigations in the Western literature under

the name of subgradisnt optimization, as a result of its successful use

by Held and Karp in conjunction with the TSP (for surveys of subgradient opti-
mization in a more general context see Held, Wolfe and Crowder [1974],
Sandi [19791).

The subgradient optimization method for solving (24) starts with some
arbitrary A = A° (say the zero vector) and at iteration k updates kk as
follows, Find L(\K), i.e. solve problem (23) for A =AF, Let H(X) be
the optimal l-tree found, 1If H(kk) is a tour, or if V(H(kk)) 22U,

stop. Otherwise, for i€y, let d, be the degree of node i in H(kk).

i
Then the n-vector with components dt - 2, 1€V, is a subgradient of L(\) at kk

(see Exercise 4), Set

il s, Fo- . Ry e e
Mo sl e g b R .
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Al gk, tk(dlz - 2), Lev

o (25) \y i

where tk is the "step length" defined by

(26) t* = q@ - LOSy)/ T @&
i

&v

- 2)2

with 0 < ¢ < 2. Then set k = k+l and repeat the procedure.

It can be shown (see any of the surveys mentioned above) that the method
[ 4
converges if I tk = o and lim tk = 0, These conditions are satisfied if
k=l k-o
one starts with y = 2 and periodically reduces ¢ by some factor.

Example 1.
Consider the 8«city symmetric TSP whose graph is shown in Fig. 1 (only arcs

with finite cost are present). Initially U = 25, o = 2, ;\g =0 fori=1,...,8.

Fig. 1. 1Initial graph G = (V,E)

Foprm v Tinut
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The optimal 1l-tree, shown in heavy lines in Fig. 1, has a weight of L(ko) = 21,

At iteration 0 we have:
d: - (2, 2, 4,1, 1, 3, 2, 1);
)
t = 2(25-21)/8 = 1;
)\} - (0’ o, 2, '1’ '1’ 1’ 0: -1).

The updated arc costs (cij + ki + k}) and the corresponding optimal l-tree,

having & weight of L(\') = 24, are shown in Fig. 2. i

: R |
U S b e 4 e b T A ey . 3
B R AT e S el st bl e b R s e o il i e P i St v o s e i L b AT

Fig. 2. Updated graph G = (V,E)

We have di =2 fori=1,...,8; thus a tour has been found and the procedure stopc.ﬁ 4
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Held and Karp [1971) pointed out that if A\° is taken to be, instead of

0, the vector defined by

[o]
hi = -(u1 + vi)/2 . iev ,
where (u, v) is an optimal solution to the dual of the assignment problem with

costs cij = cji’ ¥ 1,j, then one always has v(H(ho)) > v(AP). Indeed, for this

choice of \° one has from (23)

L(\%) = min £ T, + N +9x -2 £2°
x€x(N 1ev > 1 ) tey 1

1
x€X (@) 1€V >i 2" i b it ] i qey 1 1

> v(AP),

since v(AP) = iEv(u1 + vi) and c1j -y, - Vj‘Z 0, 1,5,

This kind of initielization requires of course that one solve AP prior to

addressing problem (24).

Helbig Hansen and Krarup [1974] and Smith and Thompson [1977] distinguish
tween the application of the subgradient procgdure at the root node of the
search tree and at subsequent nodes, by using different starting vectors A\°
and different stopping rules,

Volgenant and Jonker [1982] use an updating formula for hk, and an ex-
pression for tk, different from (25) and (26), respectively., Namely, they

take tk to be a positive scalar decreasing according to a series with a

constant second order difference, i,e,

@n N constant,

e

A i Gl i e
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and define kk+1 by setting for 1€V,
/ k k
ki if di = 2
(28) kk+1 =
Ny + 0.66°(a5-2) + 0.4 2)  otherwise

It should be mentioned that none of the versions of this subgradient optimization
method can be guaranteed to solve (24) in polynomial time with a prespecified
degree of accuracy., However, the stopping rules are such that after a certain
number of iterations the procedure terminates with an epproximation to an

optimal A, which gives a (usually good) lower bound on L(X).

Branching rules

BR 6, (Held and Karp {1971]). At node k, 1let the free edges of the current

l-tree (i.e, those in E Ulk) be ordered according to nonincreasing penalties,

and let the first q elements of this ordered set be J = {(il,jl),...,(iq,jq)},
where q will be specified below, Define q new subproblems by

Lor "L Ul sh =100} r=1l,....9
(29) Ek+r = Ek U{(ir’jr)} ’ T =1l,400,9-1

Bryq = B YI(LEL o 4 =por ) =p]
Here p € V 1is such that Ik contains at most one edge incident with
p, while Ikﬁq contains two such edges; and q is the smallest subscript
of an edge in J for which a node with the properties of p exists,
This rule partitions the feasible set, and makes the current l-tree

infeasible for each of the new subproblems generated, but the aumber q of

‘the new subproblems is often larger than necessary,

et A R b i s




s ———

BR 7, (Smith and Thompson [1977)j), Choose a node vhose degree in the
current l-tree is not 2, and a maximum-cost edge (i,j) among those incident

with the chosen node. Then generate two new subproblems defined by

Bl TR MWL Ly g
(30)

Besz ™ B Lerg = G VLT

This rule generates only two successors of each node k of the search
tree, but the minimum l-tree in subproblem k remains feasible for subproblem
k + 2,

BR 8, (Volgenant and Jonker [1982]), Choose a node p whose degree in
the current l-tree exceeds 2. Such a node is incident with at least two free
edges, say (il,jl) and (12,j2) (otherwise Ik contains two edges incident
with p, hence the remaining edges incident with p belong to or should belong

to E). Generate three new subproblems defined by

Bt = B o Ten = G VG 5 Upadd s

Gl B, = U(,1)], Lo = L Ug,i]

B = B VALY has = &

IZ p 1is incident with an edge in Ik’ then node k+l1 is not generated,
This rule also partitions the feasible set and makes the l-tree at node k
infeasible for each of the successor nodes, while the number of successors of

each ncde is at most 3,
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Qther features
Held and Karp [1971] and Smith and Thompson [1977] use a depth first sub-

problem selection rule, while Volgenant and Jonker [1982] have implemented both
& depth first and a breadth first rule, with computational results that indi-

cate a slight advantage for the depth first rule (in their implementation).

Extension to the asymmetric TSP
The basic ideas of the l-tree relaxation of the symmetric TSP carry

over to the asymmetric case (Held and Karp [1970]), in that the l-tree in
an undirected graph can be replaced by a l-arborescence in the directed graph
G = (V,A), defined as an arborescence (directed tree) rooted at node 1,
plus an arc (i,1) Jjoining some node 1i€V\{1] to node 1. The constraints

defining a l-arborescence, namely (4) and

(32) s xijzl, vs;v:{l}es
1€sJeV\s

33) S £x,,=n
1eviev 1J

(34) igvxﬂ =1

are easily seen to be a relaxation of the constraint set (2), (4), (5) of
the TSP.

The problem of finding a minimum-cost l-arborescence can again be de-
composed into two independent problems, namely (&) finding a minimum-cost
arborescence in G rooted at node 1, and (8) finding a winimum-cost arc
(i,1) in G. Problem (a) can be solved by the polynomial time algorithms
of Edmonds [1967] or Fulkerson [1974], or by the O(n’)-time algorithm of
Tarjan {1977],

i
5
H
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To obtain the Lagrangean version of the l-arborescence relaxation, one

forms the function

(35) L(K) = min S Z ¢, ,x & \ ( - X 1)
xex@) tevger U Tt ey 1
= min SR (C + A ) x =z )\

xxX (@) ieviev 7 eyt

where X(G) is the set of incidence vectors of @, the family of l-arbo-
rescences in G. Again, the strongest lower bound on v(TSP) is of course
given by \ = N such that

(36) L(T) = max LQ) ,
A

and subgradient optimization can be used to solve problem (36). However,
computational experience with this relaxation (see Smith [1975]) shows it to
be inferior (for asymmetric problems) to the AP relaxation, even when the

latter uses the original objective function of the TSP,

4, Relaxation IJI: the Assignment Problem with Lagrangean Objective Function

This relaxation was used for the asymmetric TSP by Balas and Christofides
[1981]., 1It is a considerable strengthening of the relaxation consisting
of the AP with the original cost functiom, involving a significant computa-
tional effort, which however seems amply justified by the computational
results that show this approach to be the fastest currently available method

for this class of problems,

Consider the asymmetric TSP defined on the complete directed graph G = (V,A),
in the integer programming formulation (1), (2), (4), plus the subtour-elimination

constraints. The latter can be 'rritten either as (3) or as (5), but for reasons

) e b e e e B e i

i,

ol R s a St s
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to be explained later, we include both (3) &nd (5), as well as some positive

linear combinations of such inequalities, and write the resulting set of subtour-

4 e AT AT I A TR e e e et e gl

elimination inequalities in the generic form

(37) T Tatx " tET.

jeviev 4 1y 2

Thus our integer programming formulation of the TSP consists of (1), (2), (4)

and (37). To construct a Lagrangean relaxation of TSP, we denote by X the feasible

set of AP, and associate 8 multiplier Weo t<T, with every inequality in the system

(37). We then have

?

|

i (38) Lw) =minT T Tw (S Zatx at3

g catizvyzr H T e ey 1 T % |
i £
} o t :
t amia o & (e Sw a )% = w.a_, !
! xexievier H eer £ 4 S ter ©

vhere w = (wt). Clearly, the strongest such relaxation is given by w = w such

that

(39) L(W) = max L(W)
w>0

The Lagrangean dual (39) of the TSP could be solved by subgradient optimi-

PSR

zation, like in the case of the l-tree relaxation of the symmetric TSP. However,

in this case the vector w of multipliers has an exponential number of compo- ;

nents, and until an efficient way is found to identify the components that need

to be changed at every iteration, such a procedure seems computationally

expensive, Balas and Christofides [1981] therefore replace (39) by the

"restricted” Lagrangean dual

(40) max L(w) ,
wav

where




w > 0 and there exists u,vERn such that

Wadw = c if x
u, +v, + Swar { 1]

L) et g eyy if Fyy =0

RO . e o b SO

and x 1is the optimal solution found for the AP.

In other words, (40) restricts the multipliers w_ to values that,

t
together with appropriate values U vj , form a feasible solution to the

B TP S USRS 1 SRS R SR ORI B

dual of the linear program given by (1), (2), (37) and x . >0 , 1,j€V.

i}
This may cause the value of (40) to be less than that of (39), but it

AT 30T LR PV e, G TS

leaves the optimal solution X to AP, also optimal for the objective function

(38), Thus (40) can be solved without changing X. While 20 good

.

method is known for the exact solution of (40), Balas and Christofides [1981)

R T o s S

G e

give a polynomially bounded sequential noniterative approximation procedure,

which vields multipliers Gt such that L(&) typically comes close to v(ISP):

for randomly generated asymmetric TSP's, L(W) was found to be on the average

St AR A T B

99.5% of v(TSP) (Christofides [1979], p. 139-140),

The procedure starts by solving AP for the costs ¢ ., ¥ 4,§, and taking u,, Vv

i3
to be the components of the optimal solution to the dual of AP, It then assigns

b

values to the multipliers v, sequentially, without changing the values assigned
earlier, We say that an inequality (37) admits a positive multipliier, if there
exists a v, > 0 which, together with the multipliers already chosen, satisfies

the constraints of W, At any stage, v(TSP) is bounded from below by |

(41) fu + Lv, + Zwal .
gy 1 qevd eertt

since (u,v,w) is a feasible solution to the dual of the linear program cdefined

by 1y, (2), (37) and %44 >0, ®1,3.
-
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The bounding procedure successively identifies valid inequalities that

(1) are violated by the AP solution X , and

(11) admit a positive multiplier.

Such inequalities are included into L(w) in the order in which they

are found, with the largest possible multiplier w The inclusion of each

t.
new inequality strengthens the lower bound L(w). We denote by Eij the re-

v, and the multipliers

duced costs defined by the optimal dual variables u, , f

a = - - - t ¢ 2
wt, i.e,, 13 cij u, vj tgrwtlij. L
At any given stage, the admissible graph G° = (V,Ao) is the spanning '

subgraph of G containing those arcs with zero reduced cost, i.e.

f t ]
Pl [ « »
Ao =i 1,)) € A‘ui + vj + cgrwtaij = cij £

where T 1is the index set of the inequalities included so far in L(w). The
inclusion of each new inequality into the Lagrangean function adds at least one
new arc to the sat Ao. Furthermore, as long as G° is not stromgly connected, the
procedure is guaranteed to find a valid inequality satisfying (1) and (ii). Thus
the number of arcs in A° steadily grows; and when no more inequalities can be
found that satisfy (i) and (i1), G° is strongly connected. Finally, if at some
point G° becomes Hamiltonian and a tour H is found in G° whose incidence
vector satisfies (37) with equality for all t€T such that w, > 0, then H is an
optimal solution to TSP (see Exercise 5).

Three types of inequalities, indexed by Tl ’ Tz and T3 » Trespectively,
are used in three noniterative bounding procedures applied in sequence, We

will denote the three components of w corresponding to these three inequality

classes, by ) = (hi)isrl , L= (;‘;,:'.)1‘31,2 and v = (yi)ier3 , respectively,




Bounding procedure 1

This procedure uses the inequalities (5) satisfying conditions (i) and (ii).
For any SZV, the set of arcs (S,V'S) = {(i,j)EAliGS, JEV'S} is called a directed
cutset., The inequalities (5) corresponding to the node sets St, t<T, can be

represented in terms of the directed cutsets Kt = (St, V\St)’ as

(62) = >1, t €T

b x £ L
(4, pex !

At any stage of the procedure, the inequality corresponding to cutset

Kt is easily seen to satisfy conditions (1) and (1i) if and only if

(43) K, " Ao =0,

To find a cutset Kt satisfying (43), one chooses a node 1 € V and
forms its reachable set R(1) = {J<V|there is a directed path from { to j} in
Go. If R(1) = V, there is no cutset Kt with { € St satisfying (43), so one chooses
another node. If R(1) # V for some i € ¥, then K, = (R(1), V\R(1)) satisfies (43),
and the largest value that one can assign to the corresponding multipliier kt with-

out violating the constraints of W is %, = min ¢,.. Thus the inequality
i, ek H

(42) corresponding to K_1s included in L(v) by setting the reduced costs to

ciJ - Eij - lt, (i,j)EKt, E;j - Eij otherwise, This adds to A° all arcs for
which the minimum in the definition of It is attained., The search is then started
again for a new cutset; and the procedure ends when the reachable set of every
node is V. At that stage G° is strongly connected, and Kf\Ao # 0 for all

directed cutsets K in G. Also, from (41) and the fact that a; =1, % tETl, it
follows thac procedure 1 improves the lower bound on v(TSP) by.ztkt, i.e., at

the end of procedure 1 the lower bound is

B = v(AP) + E L
t~T1

s

B o Ll

3
3
3
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One can show that bounding procedure 1 generates at most (h~1)(h+2)/2

é cutsets, where h is the number of subtours in x (see Exercise 6). The computa-

tional effort required to find a cutset satisfying (43) or showing that none

exists is 0(n|A|).

o o

Example 2.
Consider the B8-city TSP whose cost matrix is shown in Table 1, %
Table 1 . . é
1 2 3 4 5 6 7 8 .g
1 X 2 11 10 8 7 6 5 ;
2 ! 6 x 1 8 8 4 6 7 ;

4 11 9 10 X 1 9 8 10
5 11 11 9 4 X 2 10 9
6 12 8 5 2 11 X 11 9

7 (10 11 12 10 9 12 x 3 1

Table 2 shows the optimal solution x to AP (;i, = 1 for (i,]j) boxed in,

;ij = 0 otherwise), the optimal solution (E,;) to the dual of AP (the numbers

on the rim), and the reduced costs ¢,,. The solution value is 17. The correspon-

1}
ding admissible graph Go is shown in Fig. 3.

Bounding procedure 1. Cutset K, = ({1, 2, 3, 7, 8}, {4, 5, 6}) admits
A o= 25,6 = 2, and cutset K, = ({4, 5, 6}, {1, 2, 3, 7, 8}) admits Ay = —g’3 = 3.
The lower bound becomes 17 + 2 + 3 = 22, The new reduced cost matrix is shown

in Table 3 and the corresponding admissible graph G° in Fig. 4. Note that G°

of Fig., 4 is strongly connected.
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Table 2
1 2 3 4
x @ 9 8
3 x [0 7
(0] 9 x 8

Fig. 3. Graph G° defined by the AP solution

o BT e 3 il
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Table 3
1 2 3 4 5 6 7 8
x [0 9 6 4 3 4 3
3 x [0 5 5 1 5 6
(0] 9 X 6 3 7 0 8
5 5 6 x | 8 4 6
4 6 4 2 x [0 5 4
5 3 o [0 9 X 6 4
5 8 9 5 4 7 x [0]
4 9 9 7 3 o [0 «x

Fig. 4.

&

Graph Go after bounding procedure 1

G B
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Bounding procedure 2

This procedure uses the inequalities (3) that satisfy conditions (i) and

RN o s ok B

(i1), i.e. are violated by X and admit a positive multiplier, To write these
inequalities in the general form (37), we restate them as

(44) -f £ x,21-]s]|, t€T,. %
165 368, 1] ¢ 2

The subtour elimination inequalities (3) (or (44)) are known to be
equivalent to (5) (or (42)). Nevertheless, an inequality (44) may admit a
positive multiplier when the corresponding inequality (42) does not, and vice
versa,

If Sl""’sh are the node sets of the h subtours of X, every in-
equality (44) defined by S t=l,...,h, 1is violated by X; but a positive

‘multiplier k. can be appiied without violating the condition that X, ,6 =1

oo gl VT e e R

ij
implies Eij = 0, only by changing the values of some u, and vj , and this

in turn can only be done if a certain condition is satisfied. Roughly speaking,

we have to find a set of rows I and columns J such that, by adding to each u,, ifI

i’

and Vj' j€J the same amount My > 0 that is being added to E;j’ (i,j)G(St, St),

we obtain a new set of reduced costs Zij such that E;j >0 for all (1,3), and ;

Eij = 0 for all those (i,j) such that ;ij = 1, The condition for this is best

expressed in terms of the assignment tableau of the Hungarian algorithm whase

rows and columns are called lines, and whose row/column intersections are called
cells, Cells correspond to arcs of G and are denoted the same way.

Let S_ be the node set of a subtour of X, and

a, = {4, D& 1,565}, AL = {(1, D%, = 1]

3
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Theorem 2 (Balas and Christofides [1981]), 1Inequality (44) admits a
positive multiplier if and only if there exists a set C of lines such that

(a) every (1,3)6A2 1s covered by exactly ome line in C ,

(8) every (i,j)GAt\A; is covered by at most one line in C ,

(y) no (i,j)GAo\At i8 covered by any line in C ,

If such a set C exists, and it consists of row set I and column set J,
then the maximum applicable multiplier is
" Ghectd

where

q = (I,J):QI,V\SC) u(V\St,J) .

Proof. Sufficiency. Suppose line set C, consisting of row set I and
column set J, satisfies (&), (B), (V). Then'adding e >0 to Eij for all

(1,1)€(S,, St), as well as to all ug, 1€I and Vys J€J, produces a set of reduced

costs Eij such that Eij = 0 for (i,j)EAé, since C = I J satisfies (g). Further,

since C satisfies (3) and (Y), Ei'j _>_Eij = 0 for all (1,1)€A \A[, and Ei’j = Eij

for all (1,j)€A;\At. The only reduced costs that are diminished as a result

= 0

of the above changes, are those corresponding to arcs in one of the three sets
(1,3), (I,V\St), (V\St, J) whose union is the set M of the theorem. Hence
setting by equal to the minimum reduced cost over M provides a positive multiplier

that can be applied to the arcs in (St’ St)'

Necessity, Suppose a multiplier u > O can be applied to the arc set (S, St).

In order to prevent the <

i
vj by . for all (1,j)€Aé. If this can be done, it can be done by adding .«

for (1,j)€Aé from becoming positive, one must increase

u

3
3
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to u, or v, (but not to both) for (i,j)EAé; and the corresponding index sets I

i ]
and J form a set C = I{UJ that satisfies (). Let C be the collection of all

sets C obtained in this way, Now take any CE€C, If C violates (B), then

Ei’j - :11 +p-2u< Eij = 0 for some (1,j)eAt\At'. and if it violates (Y), then

:Ij < Eij = 0 for some (i’j)EAo\At' Since by assumption p > 0 can be applied

to (S, S,), there exists at least one set CEC that satisfies both (B) and (Y).|

To check whether for a given subtour-node-set St there exists a set of
lines C satisfying conditions (¢), (B), (Y¥), we proceed as follows,

First we construct & set R- of rows that cannot belong to C, and a set Kt
of columns that must belong to C, if conditions (&), (B), (Y) are to be satisfied.
To do this, we start with Kkt = 9 and in view of (y), put into R" all rows i for
which there exists a cell (i,j)EA° with jEV\St. Then we apply recursively the
following two steps, until no more additions can be made to either set:

If a row 1 was put into R”, then to satisfy (g) we put into kt every column

j such that (i,j)GAé. ;é

R——

If a column j was put into K+, then to satisfy (B) we put into R™ every
row h such that (h,j)GAt.

To state the procedure formally, we set K: =0,

R, = {1€St|3(1,j)€A° with jEV\St},

and define recursively for r = 1,...,?,

o = o 4 -
K= K, U{s€s [2(1,5)€A] with 1€R_ .}

R, = Ry _, U{1€s |2(1,3)€A, with ek} .

Here T is the smallest r for which K: = K:_
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Next we use a perfectly analogous procedure to construct a set R+ of rows
that must belong to C and a set K of columns that cannot belong to C, if (qa),

(B), (Y) are to hold. In other words, we set R: =0,
K = (365 |9(1,1)€A  with 1€V\S ],

and define recursively for s = 1,...,;,

+ + t -
R, = R, U {1€St\3(1,j)€At vith J€&° ]

K, =K,_,U {jest\i(i,j)GAt with iERs}

Here s = min{?l, ;2], where ;1 1s the smallest s such that R: = R:_l or

-

Ks = Ks-l’ and sy

1f s = ;2, then some row or some column that cannot belong to C, must belong

is the smallest s such that R:f\R% # 0 or K;IWK; $ 0.

to C for (a), (B), (¥) to hold; hence there exists no set C of lines satisfying
(), (B), (Y), and no positive multiplier can be applied to the inequality (44)
corresponding to St.

If s = 5, then the set of lines C = IUJ, where I = S \RZ and J = K,
satisfies conditions éa), (B), (y). Thus we include the inequality (44) corre-
sponding to St into L(w) with the multiplier My > 0 defined in Theorem 2, and
set the reduced costs to E;j - zij " by (1,3)¢eM, E;j - 315 otherwise. (Here
M is the set defined in Theorem 2.)

In both cases, we then chuose another subtour, until all subtours have been
examined. If h is again the number of subtours, bounding procedure 2 requires
0(ho|A\) steps, It can be shown (see Exercise 7) that this procedure improves
the lower bound on v(TSP) by zt“t’ i.e., at the end of procedure 2 the lower

bound is

82=V(AP)+ T A+ T By o

t
tETl t€T2
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Example 2 (continued).
Bounding procedure 2, The subtours of X are (1, 2, 3), (4, 5, 6) and
(7, 8)(see Table 3 and Fig. 4),

For §, = {1, 2, 3}, R_ = {3}, x’l“ = {1}; X" = {3}, RI- {2}). Thus ¢ = TUJ,

-
[+

where I = {1, 2}, J = (1], and p = ¢ 1. Fors, = {4, 5, 6}, R_= {6},

2,6
x; - {4} € = (6}, R‘{ = {5}, and C = TUJ, with I = {4, 5}, J = {4}, and
bp = G5 4 = 2. Finally, for Sy = (7, 8), K = (8}, X] = (7}; K] = {7}, and
since KIF]KI = {7} # 9, the inequality corresponding to subtour (7, 8) does not
admit a positive multiplier.

The lower bound becomes B, = B1 tpg o, = 22+ 1+ 2 =25, The new reduced

costs are shown in Table 4, and the corresponding admissible graph Go in Fig. S.H

Table &

x @ 3 2
9 x 6 4
4 7 X []
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E Fig. 5. Graph Go after bounding procedure 2

Bounding procedure 3

The class of inequalities used in this procedure is defined as follows.
Suppose G_ has an articulation point, i.e. a node k such that G_ - {k} has
more than one component. Let one of the components have node set St’ and denote
W, o= V\StU{k}. Then every tour contains an arc of at least ome of the cutsets

KL = (St’wt) and Ké' = (Wt’st)’ hence the incidence vector x of any tour

satisfies the inequality

(45) ) x,>1.
(1, e’y

Furthermore, (45) satisfies condition (i), i,e, is violated by the AP solution,
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Bounding procedure 3 uses those inequalities (45) that also satisfy
condition (ii). Although every inequality (45) is the combination of some
inequalities (3) and equations (2) (see Exercise 8), aevertheless it is possible
to find inequalities (45) that satisfy condition (ii), i.e., admit a positive
multiplier, when no inequality (3) (i.e., (44)) satisfies it. Indeed, it is not
hard to see, that if k is an articulation point of Go and St is the node set of
one of the components of G _ - {k}, then Kél1A° = Ké’ﬁ A, = P and a positive

multiplier given by

ncij

(46) v, = min
(1, 1) EKLUK,

t
can be applied to the arc set KéLJK: . On the other hand, if Go has no articula-
tion point, then for any choice of ‘the node k, the minimum in (46) is O and thus
no inequality (45) admits a positive multiplier.

Thus bounding procedure 3 checks for swervy LIV whether it is an articulation
point, and if so, it takes the corresponding inequality (45) into L(w) with the

multiplier Ve given by (46). This is done by setting 14 - E;j = Ves (i,j)éKélJK
Eij - Zij otherwise, Since Go bas n nodes, and testing for connectivity requires
0(|A|) steps, bounding procedure 3 requires 0(nlA|) steps.

In view of (41) and the fact that (45) has a righthand side of 1, at the end

of bounding procedure 3 one has the followiug lower bound on v(TSP):

32 = y(AP) + L ht + Z “t + £ vt 5
céTl cé'rz té'r3

Example 2 (continued).
Vertex 6 is an articulation point of Go (see Fig, 5). The corresponding

cutsets are K| = ({4, 5}, {1, 2, 3, 7, 8]) and K= ({1, 2, 3, 7, 8}, (4, 5D),

n
t’
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and the arc set K{lJK{' admits the multiplier v, = 35 1% 1. There is no other
»

articulation point, and the procedure stops with the lower bound B, = B_ + v

3° 27T
25 + 1 = 26, The new reduced costs are shown in Table 5, and the corresponding

G, in Fig. 6.]|

Table 5

Fig. 6. Graph G° after bounding procedure 3

i S e

i
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Additional bounding procedures

At the end of bounding procedure 3, G° 1s strongly connected and witkout
articulation points, At that stage an attempt is made to find a tour in Go.
For that purpose a specialized implicit enumeration technique is applied,
with a cut-off rule, If a tour ﬁ is found whose incidence vector X satis-
fies with equality all those inequalities (37) such that w, >0, then H is
optimal for the current subproblem (this follows from elementary Langrangean
theory),

Example 2 (continued). The following tour can be identified by inspection
in G° of Fig. 6: H = {(1, 2), (2, 3), (3,7N,(, 8, (8, 6), (6, 4), (4, 5), 5, 1}
The value of H is 26, equal to L(w) = B3, the lower bound at the end of procedure 3,
The tour H contains exactly one arc of each cutset associated with a positive kt’
namely arc (8, 6) of K, = ({1, 2, 3, 7, 8}, {4, 5, 6}), and arc (5, 1) of
K, = ({4, s, 6}, {1, 2, 3, 7, 81). Thus the incidence vector of H satisfies
with equality the two inequalities (42) corresponding to K1 and Kz, as required,
Further, H contains exactly ISI' =1 =2 arcs of the subtour with node set
S1 = {1, 2, 3}, namely, (1, 2) and (2, 3); and exactly lSzl = 1=2 arcs of the
subtour with node set s, = {4, 5, 6}, namely (6, 4) and (4, 5). Thus the
complementarity condition is also satisfied for the two inequalities (44)
corresponding to S1 and Sz. Finally, it contains exactly one arc of the set
Kl'uxl”, where K| = ({4, 5}, {1, 2, 3, 7, 8}y, Kl”a ({1, 2, 3, 7, 8}, {4, s},

namely (5, 1): so the complementarity condition also holds for the inequality

(45) corresponding to K{LJK{'. In conclusion, H is optimal.“

1f, after bounding procedure 3, a tour f is found such that % violates this

complementarity condition for some t & T, then attempts are made to replace those
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inequalities (37) that are "out of kilter," i.e., for which the complementarity
condition is violated, by "in kilter" inequalities (of the same tvpe), i.e.,
inequalities that are tight for X and thus admit positive multipiiers satisfying
the complementarity condition. These attempts consist of a sequence of three
additional bounding procedures, called 4, 5 and 6, one for each tvpe of inequality
(42), (44) and (45), respectively. Bounding procedure 4 takes in turn each in-
equality (42) which has a positive multiplier M and vet is slack for x, and per-
forms an exhaustive search for other inequalities of type (42) that could replace
the inequality in question (with new multipliers) and which are tight for x. If
the search is successful, the in kilter inequalities with their new multipliers
replace the oyt of kiicer inequality and one proceeds to the next out of kilter
inequality of twpe (42). Procedures 5 and 6 perform the same function for out
of kilter inequalities of type (44) and (45), respectively, These procedures are
described in detail in Balas and Christofides [1981]. When procedures 4, 5 and
6 are not successful in replacing all out of kilter inequalities (and thus proving
i to be aa optimal tour), they nevertheless strengthen the lower bound on v(TSP).
Each of the six bounding procedures is polynomially bounded. This (worst
case) bound is 0(n4) for procedure 1, 0(n3) for each of the other procedures.
The mean times are considerably shorter, and on the average procedure 2 (the
only one that changes the dual variables U, vj) takes the longest, The
general algorithm of course remains valid if any subset of :he six bounding
procedures is used in place of the full set, but computational testing indi-
cates that using all 6 procedures is more efficient (i{.e. results in smaller

search trees and shorter overall computing times) than using any proper subset.

s
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Branching rules and other features

Before branching, all arecs (i,j) such that Eij >U - L(w) are deleted
from G, This "reduction" has removed on a set of 120 randomly generated problems
(Balas and Christofides [1981]), on the average 96-977 of the arcs in problems
with up to 150 variables, and 987 in problems with 175-325 variables.

The AP relaxation with Lagrangean objective function can of course be used
with any of the branching rules BR1 - BR5 described in the context of the AP
relaxation with objective function (1), Balas and Christofides {1981] use two
rules intermittently, namely BR3 (partitioning on the basis of a subtour elimi-

nation inequality (3)), and another rule based on a disjunction from a condi-

tional bound, introduced earlier in the context of set covering (Balas [1980}1).

This latter rule is motivated by the following considerations.

let H be the current tour and x its incidence matrix. Remove from L(w)
all those inequalities (37) that are slack while the associated multiplier is
positive, Let 611 be the reduced costs, and L(W) the lower bound, resulting

from this removal,

Theorem 3, Llet S=H, S = {(11, jl),...,(ip, jp)} be such that

P
(47) T éi >U - L(W),
j -
r=l "r°r

and let the arc sets QrCZA, r=1,...,p, satisfy

~

(1, N, T

(i,
Then every solution x to TSP such that cx < U satisfies the disjunction
o

(49 Yok, =0, (4,3)2Q).
r=] i ’ r

ot B i S

R s Ml
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Proof. L(wW) is the value of an optimal solution to the dual of the linear
program LP defined by (1), (2), xij >0, (i,3)€A, and those inequalities (37)
with a positive multiplier. Now let x be a feasible solution to LP that violates

(49). Then x satisfies

(50) ‘:xij >1 ,
(i,j)EQr

r=1,...,p.

Let LP+ be the linear program obtained by adding to LP the constraints (50).
From (48), if we assign the values Ei i r=1,...,p to the dual variables
r'r
asgsociated with the inequalities (50), we obtain a feasible solution to the dual

P
of LP,. But then the objective function value of this solution is L(w) + I € 4 0

r=1l "r'r
and hence from (47)

Ph
cx > L(W) + zcij >u.

r=]l "r'r
Thus every solution x to TSP such that cx < U satisfies (49).]|
The branching rule can now be stated as follows.
BR9. Choose a minimum-cardinality set Ss;ﬁ, S = {(11, jl),...,{ip, jp)},
satisfying (47). Next construct a px|A| 0-1 matrix D = (d;j

row index and (i,j) the column index), with as many 1's in each column as possible,

) (where r is the

subject to the condition (48) and (1, jr)eQr, r=1,...,p, where

r
Q = {d,n&le;, =1}k

Generate the p mnew subproblems defined by the disjunction (49), where

the r-th subproblem is given by
Y
Betr "B VS

(51) r 'lguo-,P .

Wt
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The branching rule BRI is used intermittently with BR3 because at different
ncdes the ranking of the two rules (in terms of strength) may be differemt, The
choice is based on certain indicators of relative strength,

As to subproblem selection, the Balas-Christofides algorithm uses a mixturas

of depth first and breadth first: a successor of the current node is selected
whenever available; otherwise the algorithm chooses a node k that minimizes

the function

E(k) = (L(W), - V(AP)) ‘sig)-"s}m ’

where L(w)k is the value of L(w) at node k, V(AP) is the value of the initial AP,
while s(0) and s(k) are the number of subtours in the solutions to the initial

AP and the one at node k, respectively.

5. Other Relaxations

For the same reasons as in the case of the AP relaxation with the original

objective function, the AP relaxation with the Lagrangean objective function is

inefficient (weak) in the case of the symmetric TSP. Limited computational
experience indicates that on the average the bound L(w) attains about 967%
0of v(TSP), which compares unfavorably with the bound obtained from the l-tree
relaxation,

On the other hand, the main reason for the weak performance of AP-based
ralaxations in the case of symmetric problems, namely the high frequency of
subtours of length 2 in the optimal AP solution, can be eliminated if AP is

replaced by the 2-matching problem in the undirected graph G = (V,E).
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The 2-matching relaxation
The problem of minimizing the function (6) subject to constraints (7) and

(9) is known in the literature as the 2-matching problem, and is obviously

a relaxation of the TSP, Bellmore and Malone [1971] have used it for the
symmetric TSP in a way that parallels their use of the AP-relaxation for the
asymmetric TSP, A 2-matching is either a tour or a collection of subtours,

and the branching rules BR2 - BR5S based on the subtour-elimination inequalities

(3) and (5) for the asymmetric TSP have their exact parallels in branching rules

based on the subtour elimination inequalities (8) and (10) for the symmetric TSP,

The objective function (6) ~an be replaced, just like in the case of the
AP relaxation, with a Lagrangean function using the inequalities (&) and/or
(10), The Lagrangean dual of the TSP formulated in this way is as hard to
solve exactly as in the asymmetric case, but it can be approximated by a pro-
cedure similar to the one used by Balas and Christofides [1981] with the
AP-velaxation, Further facet defining inequalities, beyond (8) and (10),
based on the work of Grotschel and Padberg [1979], can be used to enrich the
set drawn upon in constructing the Lagrangean function,

Although the 2-matching probiem is polynomially solvable (Edmonds [1965]),
the main impediment in the development of an efficient branch and bound proce-
dure based on the 2-matching relaxation has so far been the absence of a good
implementation of a weighted 2-matching algorithm, However, as this difficulty
is likely to be overcome soon, the 2-matching relaxation with a Lagrangean
objective function will in all likelihood provide bounds for the symmetric TSP

comparable to those obtained from the l-tree relaxatiom.

AT T

3
-
-




The n-path relaxation

The problem of minimizing (1) subject to the constraint that the solution

X De the incidence matrix of a directed n-path starting and ending at a fixed

node v (where '"path" is used in the sense of walk, i.e., with possible repeti-

tions of nodes, and n denotes the length of the path) is clearly a relaxation

of the TSP. An analogous relaxation of the symmetric TSP can be formulated in
terms of n-paths in the associated undirected graph. Furthermore, the constraints
(2) in the asymmetric case, or (7) in the symmetric case, can be used to replace
the objective function (1) or (6), respectively, by a Lagrangean function of the
same type as the one used with the l-arborescence and l-tree relaxations. This

family of relaxations of the TSP was introduced by Houck, Picard, Queyranne and

bbb

Vemuganti {19771, The (directed or undirected) n-path problems involved in this
relaxation can be solved by a dynamic programming recursion in O(ns) steps.
Computational experience with this approach seems to indicate (Christofides [1979],

p. 142) that the quality of the bound obtained is comparable to the one obtained from

the l-arborescence relaxation in the asymmetric case, but slightly weaker than
the bound obtained from the l-tree relaxation in the symmetric case, Since
solving the l-tree and l-arborescence problems is computationally cheaper than
solving the corresponding n-path problems, this latter relaxation seems to be

dominated (for the case of the 'pare" TSP) by the l-tree or l-arborescence re-

laxation. However, the n-path relaxation can easily accormodate extra condi-

tions which the l-tree and l-arborescence relaxations cannot, and which often

occur in problems closely related to the TSP (traveling salesman problems with

side constraints appear in vehicle routing (see Chapter 12 of this book) and

ather practical contexts.)
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A substanti=zi generalization of the n-path relaxation, due to Christofides,

Mingozzi and Toth {1981] and called state-space relaxation, has the same

i s

é desirable characteristics of being able to easily accommodate side constraints,

The LP with cutting planes as a relaxation

Excellent computational results have been obtained recently by Crowder

e K2 e

and Padberg [1980] for the symmetric TSP by a cutting plane/branch and bound

* approach, It applies the primal simplex method to the linear program dafined

by (6), (M, x,j > 0, ¥i,j, and an unspecified subset of the inequalities
i1 2

defining the convex hull of incidence vectors of tours, generated as needed

to avoid fractional pivots, The procedure uses mostly inequalities of the

form (10), but alsc other facet inducing inequalities from among those intro-
duced by Grgtschel and Padberg [1979]. When the search for the next inequality
needed for an integer pivot fails, the procedure branches, Since the main ;
feature of this approach is the identification of appropriate inequalities to |
be added to the linear program at each step, it is being reviewed in the

chapter on cutting plane methods,

Ay Z P L
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6, Performance of State of the Art Computer Codes

In this section we review the performance of some state of the art branch

and bound codes for the TSP, by comparing and analyzing the computational results

reported by the authors of these codes,

The asymmetric TSP

The three fastest currently available computer codes for the asymmetric ISP
seem to be those of Balas and Christofides [1981], Carpaneto and Toth {1%80]
and Smish, Srinivasan and Thompson [1977], to be designated in the following by

3C, CT and 38T, respectively. The main characteristics of these codes are surma-




49

rized in Table 6. Table 7 describes the computational results reported by the
authors of the codes, Each of the codes was run on a set of (different) asymmet-
ric TSP's whose costs were independently drawn from a uniform distribution of the
integers in the interval [1,1000]. The entries of the table represent averages
for 5 problems (SST), 20 problems (CT) and 10 problems (BC), respectively, in
each class, The number of nodes in the SST column is not strictly comparable
with that in the CT and BC columns, since it is based on counting only those
nodes that were selected for branching and processed. Also, the computing times
are not strictly comparable without a correction, since the CDC 7600 is about 3

times faster than the UNIVAC 1108 and the CDC 6600 (Computer Review, GML Corp.,

Lexington, MA, 1979), The picture that emerges, however, by comparing the

figures within each columm, for any of these three codes, is a pattern of growth

in computational effort with problem size, that seems rather modest for a problem
usually viewed as 'notoriously intractable', We will discuss the functional
relationship between problem siz: and computational effort in some detail further
below.

For problems in the range 40 < n < 180, the number of nodes generated by
the BC algorithm is considerably smaller than the corresponding numbers for the
other two algorithms, although CT uses a "breadth first" branching strategy, meant
to minimize the number of nodes generated, at the cost of increased storage
requirements., The reason for this is that the Lagrangean bounding function used
by BC changes the ranking of tours among the assignments, removing from considera-
tion many assignment problems whose value in terms of the original objective
function is higher than that of the optimal TSP, and which therefore must be

processed by the CT algorithm, On the other hand, in the range 200 < n < 240,

e
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Table 6. Summary description of three codes for the

30

asymmetric TSP

SST CT BC
Relaxation AP with AP with | AP with |
TSP objective TSP objective i Lagrangean J

; objective

Lower bounding

v(AP), obtained
by parametric

simplex method,

v(AP), obtained
by Hungarian

method (post-

lower bound on

Lagrangean,

" obtained by

ORI WD SO

! plus penalty optimizing approximation
i i version) ~ procedures
Branching rule || BR3 BR3 | BR3 + BRY

Subproblem

selection

depth first

breadth first

: depth first upon

forward step,
breadth first

oiam Yol e . ..

upon backtracking ‘

Upper bounding no special : no special i tour-finding i
; i
procedure ' procedure . heuristic i
1 ’ i
! 1
Variable fixing no no } yes
|

Le—rcon
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Computational results on randomly generated asymmetric TSP's

{sdes of the search tree

Computing time (seconds)

40
50
60
70
75
80
90
100
110
120
125
130
140
150
160
170
75
180
200
220
225
240
250
275
300
325

sstM ‘

130
50
70
98

215

(2)
- 12
264 S
- 27
42 -
56 39
61 -
S 43
57 -
- 46
73 -
- 58
69 -
58 63
43 5
- 84
63 -
S 89
- 106
- 124
- 1642

sst3)

1.7
9.3

8.5

13.8
42,0
53.0
22.3
62,9

110.1
165.2

65,3
108.5
169.8

441.4

cr®

10.4

16.2

19.0
32.8
29,2

35.7
46,7

53.4

10.4
13.7
21,7
38.4
49.7

()

()

Number of nodes that were explored; (2) total number of nodes; (3) UNIVAC 1108;
CDC 6600; (3) CDC 7600
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BC seems to generate more nodes than CT; the reason for this may be that at

this point the advantage of the ''breadth fiist' strategy used oy CT outweighs
that of the stronger baunding procedures used by BC. This seems to suggest that

an algorithm basad on the Lagrangean bounding procedures of BC, but using the

"breadth first'" node selection strategy of CT, will generate fewer nodes for

any problem size, than either the CT or the BC algorithms., This is undoubtedly
true, but notice that at the current state of the art, the limiting factor in
the use of both algorithms is not computing time (which has never exceeded 1.5

minutes for any problem), but (in core) storage space.

The symmetric TSP

The fastest currencly available branch and bound codes for the symmetric ISP
seem to be those of Smich and Thompson [1977] and Volgenant and Jenker {19821,
to be designated in the followiag by ST and VJ, respectively, Table 8 summa-
rizes their main characteristics, while Table 9 reports on their computational
performance,

Again, each of the two codes was run on a set of (different) symmecric
TSP's whose costs were independently drawm from a uniform distribution of the
integers in the interval [1,1000], The entries of the table represent averages
for 15 problems (except for n=80, where the eatry for SST is the average for

5 problems only), The CYBER 750 is about 3 times faster than the UNIVAC 1108,

Both codes were also tested on randomly generated symmetric Euclidean
TSP's, which required for each code a greater computational effort (e.g., for
n = 50 the average number of subgradient iterations was 3049 for ST and

1034 Zoxr V),




Relaxation

Lagrangean objective

l-tree with !

l-tree with

: Lagrangean objective

Lower bounding subgradient | subgradient :
optimization i optimization with }
% convex combination ;
g of subgradients ;
Branching rule BR7 : BR8 :

Subprcblem selzcticn

depth first

depth first

Upper bounding

no special procedure

no special procedure

i Variable fixing

no

yes
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Table 9, Computational resulcs on randomly generated symmetric TSP's
Nodes of the Subgradient Computing time
search tree iterations (seconds)
a
st® v ST v st(d | v
— —
S0 17 526 - 22,1 -
60 15 572 352 34,1 4.7
70 1¢ 760 - 6l.6 -
80 15 764 702 83.0 15.5
i 100 - . 1664 - 53,2
(1) Number of nodes that were explored; (2) not reported; (3) UNIVAC 1108;
(4) CYBER 757,
o, — A~y T i
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Avecage performance as a function of problem size

TS> is well known to be NP-complete, hence in all likelihood there is no
polynomial time TSP algorithm, i,e, no algoritim guaranteed to solve every instance
of TSP in a number of steps polynomial in n. However, this statement refers to
the worst case behavior of algorithms, and does not exclude the existence of
algorithms whose performance, though exponential in the worst case, is on the
average polynomial in n, To make the colloquial term "on the average" more
precise, assume the costs C4 5 of TSP are random numbers drawn inde-
pendently from a uniform distribution over the unit interval, Whether the
expected time required to solve such a problem is an exponential or polynomial
function of n, is at present an open question, on which the opinion of experts
is divided (see, for instance, Bellmore and Malone [1971], and Lenstra and
Rinnooy Kan [1978]).

While the theoretical issue remains unsolved, it is not irrelevant to
examine from this point of view the empirical performance of some of the more
efficient algorithms on randomly generated TSP's. 1In a recent study, Balas,
McGuire and Toth [1983] have fitted three different approximating curves to the
data of Table 7 for each of the three codes SST, CT and BC for the asymmetric
TSP, in an attempt to determine which of the three types of functions describes
best tﬁe behavior of each algorithm, The data of Table 7 were corrected for the
difference in speed between the CDC 7600 and the other two computers by multiplying

by 3 the computing times reported for the Balas-Christofides code. The functions

examined were:

f(n) = qne (polynomial),

f(n) = anﬁlogn (superpolynomial).
Bn

f(n) = qe (exponential),

where log stands for the natural logarithm and e for its base.
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Each of the three functions was expressed in logarithmic form, and a simple

regression of log f(n) was run on log n (in the case of the polynomial function),

on logzn (in the case of the superpolynomial function), and on n (in case of

the exponential function), in order to find the best fitting values of - and B

for each case., The outcome is shown in Tables 10, 11 and 12,

Table 10, Statistical analysis of the Smith-Srinivasan-Thompson algorithm

50 < n <180

Table 11, Statistical analysis of the Carpaneto-Toth algorithm

40 < n < 240

; Standard
Type of error of Coefficient of
function Best fit estimation determination
Polynomial 0.38 x 102 x n3+473 0.505 0.883
Superpolynomial]  0.105 x 107} x n0+3771logn 0.519 0.877 |
I
Exponential 1.19 X e0'0326n 0.595 0.838 }

Standard
Type of error of Coefficient of
function Best fit estimation determination
Polynomial 0.26 x 10”3 x n2+26 0.193 0.978
Superpolynomial|  0.47 x 107! x n0-242108n 0.255 0.962
Exponential 1,05 x e0-0184n 0.488 0.860

e i
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Table 12, Statistical analysis of the Balas-Christofides algorithm

50 < n <325

Standard '
Type of error of Coefficient of
function Best fit estimation determination
Polynomial 0.5 x 1079 x n3-114 0.361 0.962
Superpolynomial | 0.87 x 107> x p0-320logn 0.260 0.980
Exponential 0.85 x 1071 x ¢0:0205n 0.199 0.989

These results suggest that in the limited range of n for which the
algorithms were tested (40 < n < 180 for SST, 40 < n < 240 for CT, and 50 < n < 325
for BC), their behavior can be almost equally well described by any of the three
types of functions considered. Although the rankings given by the coefficient of
determination seem to be polynomial/superpolynomial/exponential for SST and CT,
versus exponential,;superpolynomial/polynomial for BC, the differences between
the coefficients of determination for the three function types are too small in
comparison to the differences between the same coefficients for the different
algorithms, in order to attach much significance to these rankings., Further caution
and reservations are in order because of the considerable differences in the
range of n over which the three codes were tested.

In an attempt to obtain a more meaningful ranking of the three types of
approximation curves, the range of n for each of the three algorithms was then
broken up into two approximately equal parts, and the same three function types
were fitted separately to the data in the lower half and in the upper half of

the range of n., The results, shown in Tables 13, 14, 15, yield the same rankings

it
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Table 13, The Smith-Srinivasan-Thompson algorithm, with
splitting of the range of n
F - i Standard i

Type of error of { Coefficient of '
function Best fit estimation i determination

50 < n < 110 [ |
Polynomial 0.22 x 107> x o343 0.582 0.748 ;
Superpolynomial 0.58 X 10-2 X n0.419logn 0,599 0.732 i
Exponential 0.368 x e°+ %4370 0.664 0.672 |

120 < n < 180 1
Polynomial 0.1 x 107 x %24 0.5183 |  0.400
Superpolynonial 0.43 X 107} X n0.327logn 0.5155 I 0.406
Exponential 4.48 X ale 92250 0.5041 ' 0,432 |

Table 14, The Carpaneto-Toth algorithm, with
splitting of the range of n
) Standard
Type of error of Coefficient of
function Best fit estimation determination
| 40 < n < 120

Polynomial 0.45 x 10°% x n?-689 0.116 0.990
Superpolynomial 0.12 x 10-1 X n0'3171°gt1 0.120 0.989
Exponential 0,33 x ¢0+0364n 0.237 0.959

140 < n < 240
Polynomial 0.22 x 10"} x n}+406 0.141 0.698
Superpolynomial 0.9 x np0-134logn -~ 0.138 0.708
Exponential 9.0 x e0-0073n 0.128 0.749

A S mwﬁmwﬁj
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Table 15, The Balas-Christofides algorithm, with
splitting of the range of n

- 0
)

{ Standard
Type of : error of Coefficient of
function E Best fit estimation determination \
“" 50<n<g 175

Polynomial | 0.14 x 104 x n2+407 0.288 0.937
Superpolynomial | 0.74 x 1072 x n0-26710sn 0.242 0.956 :
Exponential 0.54 x 10" ! x n0-0245n 0.120 0.989

200 < n < 325 - g
Polynomial 0.5 x 107 x o' 37° 0.100 0.984
Superpolynomial 0.11 x 1073 x p0r39310gn 0.095 0.986
Exponential 0.199 x ¢2+0170n 0.087 0.988

as before for the lower half of the range of n, but almost completely reverse
the rankings for the upper half of the range: ignoring differences of less than
0.01 in the coefficient of determination, the exponential function ranks first
over this range for both the SST and CT algorithms, with the polynomial and
superprlynomial functions tied for second place; whereas for the BC algorithm,
all three functions are now tied. To the cautionary note voiced earlier, we

should now add the fact that the coefficient of determination for this range of :

n (i,e., the upper half) is considerably weaker for SST (0.40-0.43) and CT (0.70-0.75)

than for the full range of n, while for BC it is about the same, i.e., rather

strong (0.98-0.99). The findings 1listed above are supported by additional statis-
tical evidence, for which, as well as for the methodological details of the

analysis, the reader is referred to Balas, McGuire and Toth [1983].

BTG s A T

The conclusions that we draw from this statistical analysis are as follows.
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First, over the limited range of n for which data are available, the pei-

formance of the three algorithms analyzed can be described almost equally well
by each of the three function types considered: polynomial, superpolynomial and

exponential. Second, while the best fitting polynomial functions are of a moderate

degree (ranging between 1.4 and 4.4), the best fitting exponential functions have

0.046 0.007 _ 1.012).

= 1,079 and e Note

a base very close to 1 (ranging between e
that an exponential function of this type is very different from the function e".
While the value of the latter increases more than twice whenever the variable goes

from n to n + 1, the value of 1.012" increases only by 1.2 percent when the variable

goes fromn ton + 1.
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EXERCISES

1. Show that, if the relaxation R of TSP used in the branch and bound
procedure of section 1 (either version) has a finite solution set, and the
branching rule is such that at every node i at least one solution to the re-
laxed problem Ri becomes infeasible for all the successor problems Ril""’Riq’
then the procedure is finite. For the rooted tree representation of the branch
and bound procedure discussed in section 1, what is the maximum depth of the
tree, L.e., the maximum length of a path joining any node to the root? Give
a bound on the number of nodes of the rooted tree.

2, Let x* = (xt ) be an optimal solution to the assignment problem AP,

]
and let APl be the assignment problem obtained from AP by adding the constraint
X, = 0 for some (L , j ) such that x* = 1, Describe a version of the
oo o’ o 1.3,

Hungarian method that starts with x* and finds an optimal solution to AP1 in
0(n2) steps., (Hint: show that only one labeling is required.)

3. Show that the "breadth first" rule of always choosing the node with
the best lower bound produces a search tree with a minimum number of nodes,
if (1) every node selection is uniquely determined, i.e., there are no ties
for the best lower bound; and (ii) the branching and bounding at any given
node is done only on the basis of information generated on the path from the
root of the tree to the given node. Construct examples to show that neither
(1) nor (i1) is sufficient by itself (Fox, Lenstra, Rinnooy Kan and Schrage
[1978]). Assuming that conditions (1), (ii) are not satisfied, describe a
subproblem selection rule that combines some of the advantages of "breadth

first" with some of those of ''depth first" (Forrest, Hirst and Tomlin [1974],

Balas [1975]).
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4, A subgradient of a convex function f(x) at x = xk is a vector s

such that

£(x) - £G5) > s(xx) # x,

and the subdifferential of f(x) at xk is the set of all subgradients of

f(x) at x = xk.
Let J be the family of l-trees in G = (V,E) introduced in section 3,
and let X(7) denote the set of incidence vectors of l-trees. Show that, if

H(xk) is a l-tree whose incidence vector xk minimizes the function

+ 2K + 5

z ) (cij i P

i€v j>1

on X(¢), and d? is the degree of node i in H(kk), then the n-vector whose

k
components are & - 2, i€V, is a subgradient of L(A) at A . Identify the

i
subdifferential of L(\) at AX.

5. Let G, = (V,Ao) be the admissible graph defined in section 4 with
respect to (u, v, w), and let X be the incidence vector of a tour H(x) in G,
Show that H(X) is an optimal tour in G if x satisfies inequality (37) with
equality for all t€T such that W, > 0. Is this sufficient condition also
necessary? (Hint: use the optimality conditions for the linear program de-

fined by (1), (2), (37) and x;, >0, # 1,1, and its dual.)

h|
6. Show that bounding procedure 1 of section 4 generates at most
(h-1)(h+2)/2 cutsets, where h is the number of subtours in the optimal solu-
tion x to AP. (Hint: use the following facts: (i) any node of a strongly
connected component, hence of a subtour, is reachable from any other node;
(i1) every directed cutset that is generated adds to A° at least one new

arc joining some subtour to some other subtour; and (iii) when two subtours

are joined by arcs in both directions, they form a strongly connected component.)




e e S o e Ve

é 62

7. Show that, if B1 is the lower bound on v(TSP) obtained by bounding

procedure 1, the lower bound generated by bounding procedure 2 is

B,=B, + I

2 1 t’
tET2

(Hint: use the fact that if the cost of each arc in the set U (5, St)
t<T,
2
is increased by b » then the value of the solution x (hence of the solution

(u,v) to the dual of AP obtained at the end of procedure 2) is v(AP) + L \St\ut.)
teT

2
8. Let k be an articulation point of the admissible graph Go, let St be

the node set of one of the components of Go-{k}, and consider the two directed

cutsets

!

K. = {S,. V\StU{k}}, “:”' (s, Ufkl, s}

Show that the inequality
EZZZZZI;ZZZE:lez 1
i
(i,j)EKtL,Kt

is the sum of the inequality (5) for S = StlJ{k}, the inequality (3) for S = St’
and the equations (2) for all 1€St and jESt.
9., Formulate the n-path relaxation of the TSP discussed in section 5 for

both the asymmetric and the symmetric cases, with a Lagrangean function involving

the equations (2) (in the asymmetric cése) or (7) (in the symmetric case). Give

some examples of side constraints, i.e., extra conditions, that this relaxation

of TSP can accommodate but the l-arborescence or l-tree relaxations can not,

k&
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